Modelling the emergence of pre-treatment phenotypic heterogeneity in vascularised tumours

Chiara Villa¹, Mark A.J. Chaplain¹, Tommaso Lorenzi²

¹University of St Andrews

²Politecnico di Torino

The coexistence within the same tumour of cancer cells that express different phenotypic characteristics poses a major obstacle to successful anti-cancer therapy and management of disease relapse. A more in-depth theoretical understanding of the process at the root of such phenotypic heterogeneity can be achieved through analysis and numerical simulation of structured-population models. The focus of this talk is on non-local partial differential equations modelling the adaptive dynamics of space- and phenotype-structured cancer cell populations. The analytical and numerical results presented shed light on the evolutionary determinants of intra-tumour phenotypic heterogeneity in vascularised tumours and suggest new routes of investigation for cross-disciplinary pre-treatment studies.

References

- [1] C. Villa, M.A.J. Chaplain, T. Lorenzi, Modelling phenotypic heterogeneity in vascularised tumours, arXiv preprint arXiv:1910.08566 (2019)
- [2] M.A.J. Chaplain, T. Lorenzi, C. Villa, Evolutionary dynamics in vascularised tumours under chemotherapy, arXiv preprint arXiv:1912.06381 (2019)